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Temperature Oscillation Techniques for
Simultaneous Measurement of Thermal Diffusivity
and Conductivity'

W. Czarnetzki> * and W. Roetzel>

Stmple temperature ocillation technigues are described for the fast measurement
of thermal diffusivity and conductivity of liquids. The liquid specimen is a slab
bounded above and below by a reference material. Two  Peltier clements
mounted on the outer surfaces of the reference layers generate temperature
ocillations of these surfaces. Temperature waves propagate through the reference
layers into the specimen. The thermal dilfusivity of the specimen is deduced by
measuring and evaluating the amplitude attenuation and or the phase shift
between the fundamental temperature oscillations at the surface of the liquid
specimen and at a well-defined position inside the specimen. If the thermal
diffusivity of the specimen is known. the thermal conductivity is determined
by the measured amplitude attenuation and or the phase shift between the
fundamental temperature oscillations at the surface of the reference layer and
at the surface of the specimen. Slab and semi-infinite body geometries are con-
sidered. Measurement cells are designed and experiments are carried out with
waler. ethanol. heptane. nonane. and glycerine. The results of the measurements
of thermal dilfusivity agree very well. and those of thermal conductivity reason-
ably well, with the data obtained from the literature.

KEY WORDS: cthanol: heptane: nonanc: periodic techniques, temperature
ocillations: thermal conductivity: thermal diffusivity: water.

1. INTRODUCTION

Thermal diffusivity is the important thermophysical property to describe
transient heat conduction in a solid or steady liquid. Therefore a non-steady-
state measurement technique is applicable. The presented temperature
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oscillation technique, based on a previously proposed method, combines the
advantages of a steady-state measurement with the possibility to measure a
property describing a non-steady state [1-5]. With modifications this
method can be used for simultaneous thermal conductivity meaurement.
Earlier applications were made only for solid materials [5]. To measure
thermal diffusivity and conductivity of fluids, convection must be avoided.

The background of temperature oscillation techniques and an auto-
mated measurement system are presented in this paper. To confirm the
practical applicability, experiments are carried out with different liquids
and geometries. By computerized operations the measurement can be
performed without attendance and thus be used. for instance, as a quality
control device in a production process.

2. MEASUREMENT PRINCIPLE

The energy equation

g: aV:T (1)
describes heat conduction in an isotropic solid or liquid with constant
thermal conductivity. Here T is temperature, ¢ time, and « the thermal
diffusivity. The solution of Eq. (1) depends upon specimen geometry and
boundary conditions.

At the nonadiabatic surfaces of the specimen, periodic temperature
oscillations are generated with the period ¢, and the constant angular
frequency

2n
)= (2)
P

2.1. Temperature Oscillations in a Semi-Infinite Body

In this case the initial and boundary conditions are independent of the
coordinates 3 and =. Thus the temperature will be a function of x and ¢
only. The differential equation (1) is expressed in dimensionless coordinates
containing the constant thermal diffusivity a,

w 12

Introduction of the dimensionless time

I

T=w! (4)
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gives

==2= (5)

with the boundary conditions (subscript M indicates mean; subscript 0
indicates x =0)

E=0: T(é=0,1)=Ty +uycost (6)
oT

2

i
I
N

=0 (7)

For large values of time all transient disturbances caused by starting the
oscillations fade away and the known steady periodic solution of this
problem is

T )= TN1+’{(]L)7:COS(T_;:): Ty +u cos(t—<) (8)

The phase difference 4G and the corresponding amplitude ratio
between the surface x =0 and a well-defined position x are

w 12
AG=.\'<——> (9)

2a

and

#=exp[.\‘((u/21)' 2 (10)

Measurement of the phase difference or the amplitude ratio allows the
thermal diffusivity « to be determined from Eq. (9) or (10), respectively.

2.2. Temperature Oscillations Within the Reference Layer Covering the
Semi-Infinite Body

To evaluate the thermal conductivity, the heat flow entering the
specimen is needed. For that purpose, the specimen is covered by a
reference layer. The amplitude attenuation and the phase shift within the
reference layer depend on the heat flow which is extracted by the specimen.

The temperature distribution in the reference (R) layer is determined
by the energy equation which is analogous to Eq. (1):

__=:XRV2TR (ll)
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Introducing the dimensionless coordinate of the reference layer (thickness D)
1:2
W
(=x|-— 12
: <29‘R> ()
and the dimensionless time accoding to Eq. {(4) gives, analogous to Eq. (5),

(13)

with the condition at the contact surface between the reference layer and
the specimen temperatures

Te((=0,71)=T(i=0.1) (14)

and the heat flow from the reference layer must be equal to that entering
the specimen. Heat flow per unit area is given by

L w >'25TR [w\'?aT
—/ - - = —4| — —
B\ 20p ac .o 2a) &

where / is thermal conductivity.

The steady periodic solution of this problem gives the amplitude ratio
and the phase difference between the two surface (v=0 and x = —D) of the
reference layer (subscript D indicates x = —D):

(15)

=0

(16)

C + tanh({
AGR=arctan[tan(CR) + tanh(Cy) J

1 + C tanh({g)

<“_/> = {[cos(Cu)lcosh(( ) + Csinh((y))]?
R

Uy

+ [sin({g)sinh({y) + Ccosh({)) ]2 (17)
with
} w \'?2
‘=R=D<'.)_> (18)
20,
and

s 12
C=i<“—“> (19)

-
Ar \ &

From the measured phase difference or the amplitude ratio between the two
surfaces of the reference layer and the thermal diffusivity of the reference
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material, the constant C can be determined from Eq. (16) or (17), respec-
tively. With the known thermal diffusivity from Eq. (9) or (10), the thermal
conductivity of the specimen can be determined from Eq. (19).

2.3. Steady Temperature Oscillations in a Slab

A slab (0 < x < L) is considered with two diathermic surfaces. On each
side, periodic surface-temperature oscillations are generated with the same
constant angular frequency [Eq.(2)], but with different amplitudes and
phases. The mathematical formulation of this problem is given as (sub-
script L indicates x=L)

a*T oT
=24 2
o0& or (20)
T(&y=0,7)=Ty +ugcos(t+ Gy) (21)
w 1:2
T<§L=L<;> ,T>=TM+HLCOS(T+G,‘) (22)

with

12
f=x <9> (23)
fod

The use of Laplace transform techniques yields the steady priodic solu-
tion of Egs. (20)-(22). For convenience the complex solution is presented:

et sinh(& /i) —uge™® sinh(\/i(E—&,))
()
sinh(¢, \/7)

The complex amplitude ratio B* between the points x=L/2 and x=1L

T*S. 1)=Ty+ (24)

becomes
2u, et L [iw\'?
1, et 4 e’ cos [ 2 <1> ] )
The real phase difference 4G and the real amplitude ratio are expressed as
Im[ B*]
AG=arctan<Re[B*]> (26)
and

JL _ {(Re[B*])*+ (Im[ B*])*}'? (27)

Uy
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From a measurement of the phase or the amplitude at the two sides
and in the center of the slab the thermal diffusivity « can be determined
from Egs. (23), (26) or (23). (27). respectively.

2.4. Temperature Oscillations Within the Reference Layer Covering the Slab

Consideration of the reference layer and of the generating temperature
oscillations at the surface of the reference layer at the top and at the
bottom surface of the specimen with the same constant angular frequency,
but with different amplitudes and phases (see Fig. 1), gives the mathe-
matical formulation of this problem as follows:

¢Ty 0Ty
oct ot

12
c=.\-<3> (29)
xR

and with the boundary conditions

(28)

with

Tw((=0,0)=T(=0,1) (30)

L w\'"PaT, fw\"aT
— AR\ T e = — /4 i F
J=u < <

29(R Oy
The steady periodic solution in the domain of 0 < x < L is analogous to
Eq. (24). The solution in the domain of —D < x <0 is given as

(31

=0

THEC & )=T,, +u,e" 9 cosh({ /i)
R 1

L L inh({ /i
+C[HR(””+('R)—Il(,t"”*'('”’COSh(L‘_:L\/;):IM (32)

sinh(¢, /i)

where C is given by Eq. (19).
The complex amplitude ratio B} between the points x= —D and x =0
becomes

(10, Juy) "9t~ —cosh(&, \/7)

sinh(&, \/7)

B =Cosh(§,,\/7)—Csinh(C,)\/7)

(33)
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The real phase difference 4G, and the real amplitude ratio are expressed
by

Im[ B
4Gy = arctan <%> (34)
R
and
Lo 1(Re[B*])*+(Im[ B*])*}' (35)

g

The thermal diffusivity of the reference material and the specimen and
the conductivity of the reference material are known. From measurement of
the phase or the amplitude at both sides of the reference layer and of the
other side of the specimen, the thermal conductivity of the specimen can be
determined from Egs. (33)., (34) or (33), (35). respectively.

2.5. Evaluation of Measurements

Periodic temperature ocillations are generated at the surface of the
reference layer by means of Peltier elements fed with a periodically oscillat-
ing electric voltage.

Every arbitrarilly shaped but strictly periodic temperature oscillation
can be described mathematically by a Fourier series:

a ! .
T(r)=?“-+-kzl A, sin(kt+ G,) (36)
with
1 ~2n
(IA.=—J T(t) costkr) dr, k=0.12.. (37)
0
| 2= .
hk=—| T(t)sin(kt)dr,  k=1.2,. (38)
T Yo
and
- ANl 2 (lk
A =(a;+ b)) -, tan Gk:lv— (39)
L

Thus the measured temperature oscillations are regarded as a super-
position of several sinusoids of different frequencies. amplitudes, and
phases. Each one represents a solution according to Egs. (8). (24), and
(32). In the experiments the fundamental oscillation (kK =1) is considered.
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Amplitude and phase are evaluated {rom Eq. (39) by numerical integration
according to Eqs. (37) and (38). Appled to the measured temperature at
the surfaces of the reference layer and at the center or a well-defined
position of the specimen. this yields the “measured” values of the phase
differencc and the amplitude ratio.

One-dimensional thermal conductivity is achieved by adiabatic surfaces
of the frame. For the scmi-infinite body, the amplitude ol the temperature
oscillation diminishes according to Eq. (10). At the distance ol one thermal

wavelength
b} 12
A=2n <‘—“> (40)
[}

the amplitude is reduced by a factor of expt —27) =0.0019; thus the waves
are very strongly attenuated. This implies that the solution for the semi-
infinite specimen can be used for a specimen whose thickness is greater
than one or two wavelengths.

3. EXPERIMENTS

Figure | shows a simplified scheme of the measurement cell with
specimen bounded by two parallel reference layers. The liquid is filled into
the flat cylindrical hollow space (diameter x thickness: 50 mm x 6 mm),
formed by the two reference discs {diameter x thickness: 50 mm x 8 mm)
made of stainless steel and a circular frame made of plexiglass. Filling and
deaerating are done via the small tubes in the frame. The temperatures at
the center of the specimen and at both surfaces of the reference layers are
measured by means of Ni-CrNi thermocouples (diameter 0.1 mm), which
are located on the centerline. The outside thermocouples are placed in

heat sink thermocouple
junction
copper
reference layer
_D -
0+ — :
vzt —i% =
i L 7, filling tube
plexiglass
thevrmoc'ouple Peltier-
junction element

Fig. 1. Schematic diagram of the measurement apparatus.
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a groove on the surfaces of the copper plates. and the thermocouple
junctions are butt-welded on both sides of the reference layers. The
temperatures of the two copper plates are changed periodically by means of
two Peltier elements (square: 40 mm x 40 mm). To improve heat transfer,
finned plates or cooled heat sinks are mounted on top of the Peltier
elements.

It is possible to investigate solid specimen by replacing the frame by
two identical solid plane spcimens with a thermocouple between them. If
the upper copper plate and the upper reference layer are removed and the
frame 1s extended, the specimen geometry is changed into a semi-infinite
body.

The amplitude of the temperature oscillation inside the specimen is
less than 1 K. To avoid convection. the measurement cell is turned in a
vertical position. As one can see from Eqs. (3) and (23), the sensitivity coef-
ficient of the thermal diffusivity on the frequency is constant. With decreas-
ing temperature amplitudes, the error of the amplitude measurement
increases. Thus the frequency is chosen so that the amplitude attenuation
1s about 0.5. To decide about geometry and amplitude or phase difference
measurement, the sensitivity coeflicients of the dimensionless space coor-
dinate on the amplitude and phase difference of each geometry were
studied. To determine the uncertainty of the thermal conductivity measure-
ment, the uncertainty of the thermal properties of the reference material
{up to 5%) must be added. The use of the slab and the phase difference
measurement show the smallest measurement uncertainty. The advantage
of the semi-infinite body is better filling and cleaning, especially for viscous
liquids.

4. RESULTS

Experiments were carried out with five liquids and compared with
values from the literature. To reduce the random error, the temperature
was measured over two periods and the integration range of Eqs. (37) and
{38). was shifted. Table I shows the measured thermal diffusivity and con-
ductivity of all measurements with the highest deviation from values
available from the literature [7]. The slab along with the phase difference
equations were used to obtain the results given in Table 1.

The measurement uncertainties depend on the various experimental
parameters and on the measured medium. Of the liquids studied, only
water has reliable values reported in the literature over a wide temperature
range. The magnitudes of the measurement uncertainties of the semi-infinite
body of thermal diffusivity are less than 3.5%. and of thermal conductivity
less than 10%. The magnitudes of the measurement uncertainties of the
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Table I.  Experimental Results on Different Specimens

Water Ethanol Heptlane Nonane  Glyerine
Diffusivity (10 " m*.s ') 14.12 9.323 8.538 8.673 9.705
Deviation from ref. 7 (“4) 1.5 1.8 20 1.7 1.2
Conductivity (W-m '-K ') 0.6244 01780 0.1351 0.1324 0.2713
Deviation from ref. 7 (“a) 43 29 79 0.3 5.1
Period (s) 100 100 150 150 200
Temperature ( C) 20 20 15 20 20

slab of thermal diffusivity are less than 2%, and of thermal conductivity
less than 8 %.

The most significant effects on the measurement uncertainties are
thermocouple location. contact resistance of the thermocouples, and uncer-
tainty of the thermophysical properties of the reference layer. The onset of
free convection can be detected by the deformation of the sinusoidal
temperature ocillations in the liquid. To reduce measurement uncertainty,
the thermocouples are located in an isothermal plane.

5. CONCLUSIONS

The apparatus described perform very well. They can be used for
absolute measurements slightly above or below ambient temperatures. The
experiments have demonstrated the applicability of the method proposed
for simultaneous determination of thermal diffusivity and conductivity. The
slab apparatus achieves the best performance and can easily be modified
for measurements at pressures different from ambient pressure. It the {inned
plates are thermostated. larger temperature differences [rom ambient
temperature are possible.
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