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Temperature Oscillation Techniques for 
Simultaneous Measurement of Thermal Diffusivity 
and Conductivity 

W. Czarnetzk i  -''3 and W. Roetze l  -~ 

Simrde temperature ocillation techniques are described Ibr tile fas! measurelllent 
of thermal dillusivity and conductivity of liquids. The liquid specimen is a slab 
bounded above and below by a reference material. Two Pehier elements 
lnounled o11 lhc outer surfaces of the reference layers generate temperature 
ocill:dions of these surfaces. Temperature waves propagate through tile reference 
layers into the specimen. Tile thernlal diffusivily of tile specimen is deduced by 
measuring and evaluating tile amplitude attenuation :.|nd or tile phase shift 
between the fundamental temperature oscillations at tile surface of the liquid 
specimen zmd at a well-defined position reside tile specimen. If the thermal 
diffusivity of the specimen is known, the thermal conductivity is determined 
by tile measured amplitude anenualion and or the phase shift between tile 
fundamental temperature oscillations at the surface of the reference layer and 
at the surface of the specimen. Slab and semi-infinite body geometries are con- 
sidered. Measurement cells are designed and experiments are carried out v,,ith 
W;.ller. e l J l i l no ] .  J lep l i l r le .  llOlliln~2. ~llld glycerine. Tile results of t h e  i I l e~ l su re lne l l lS  

of thermal dillusivity agree very well. and those of thermal conductivity reason- 
zJbly well. with the data obtained from tile literature. 

KEY WORDS: ethanol: heptane: nonane: periodic techniques, temperatvre 
ocillations: thermal conductivity; thermal diffusivity; water. 

1. I N T R O D U C T I O N  

T h e r m a l  d i f f u s i v i t y  is t he  i m p o r t a n t  t h e r m o p h y s i c a l  p r o p e r t y  to  d e s c r i b e  

t r a n s i e n t  h e a t  c o n d u c t i o n  in a s o l i d  o r  s t e a d y  l iqu id .  T h e r e f o r e  a n o n - s t e a d y -  

s t a t e  m e a s u r e m e n t  t e c h n i q u e  is a p p l i c a b l e .  T h e  p r e s e n t e d  t e m p e r a t u r e  
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oscillation technique, based on a previously proposed method, combines the 
advantages of a steady-state measurement with the possibility to measure a 
property describing a non-steady state [ I -5] .  With modifications this 
method can be used for simultaneous thermal condnctivity meaurement. 
Earlier applications were made only for solid materials [5].  To measure 
thermal diffusivity and conductivity of fluids, convection must be avoided. 

The background of temperature oscillation techniques and an attto- 
mated measurement system are presented in this paper. To confirm the 
practical applicability, experiments are carried out with different liquids 
and geometries. By computerized operations the measurement can be 
performed without attendance and thus be used, for instance, as a quality 
control device in a production process. 

2. M E A S U R E M E N T  P R I N C I P L E  

The energy equation 

OT 
__ = ~V2T 
~t 

(1) 

describes heat conduction in an isotropic solid or liquid with constant 
thermal conductivity. Here T is temperature, t time, and ~ the thermal 
diffusivity. The solution of Eq. (1) depends upon specimen geometry and 
boundary conditions. 

At the nonadiabatic surfaces of the specimen, periodic temperature 
oscillations are generated with the period tv and the constant angular 
frequency 

2z~ 
~o = - -  (2) 

tp 

2.1. Temperature Oscillations in a Semi-Infinite Body 

In this case the initial and boundary conditions are independent of the 
coordinates y and z. Thus the temperature will be a function of x and t 
only. The differential equation ( 1 ) is expressed in dimensionless coordinates 
containing the constant thermal diffusivity 0¢, 

c = x  \~l (3) 

Introduction of the dimensionless time 

r = c o t  (4) 
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gives 
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OZT OT 
"~ (5) 

c')~ 2 - Or 

with the boundary  conditions (subscript M indicates mean: subscript 0 
indicates x = 0 ) 

= 0: T( £ = 0. r ) = T M + u,. cos r ( 6 ) 

0T  = 0  (7) 

For  large values of  time all transient disturbances caused by starting the 
oscillations fade away and the known steady periodic solution of this 
problem is 

7"( 5, r) = T M + u .e  ~ cos( r - ,z ) = TM + u, cos( r -- ~ ) 

The phase difference A G  and the corresponding amplitude 
between the surface x = 0 and a well-defined position x are 

and 

(8) 

ratio 

ziG = x (9) 

162 = exp[.x.(co/2~x )l 2] (10) 
I1.,, 

Measurement of  the phase difference or the amplitude ratio allows the 
thermal diffusivity 2 to be determined fi'om Eq. (9) or (10), respectively. 

2.2. Temperature Oscillations Within the Reference Layer Covering the 
Semi-Infinite Body 

To evaluate the thermal conductivity, the heat flow entering the 
specimen is needed. For  that purpose, the specimen is covered by a 
reference layer. The amplitude attenuation and the phase shift within the 
reference layer depend on the heat flow which is extracted by the specimen. 

The temperature distribution in the reference (R) layer is determined 
by the energy equation which is analogous to Eq. ( 1 ): 

0TR = ~R V-~TR (1 1) 
Ot 
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Introducing the dimensionless coordinate of the reference layer (thickness D) 

= x (12) 

and the dimensionless time accoding to Eq. (4) gives, analogous to Eq. (5), 

OTR (~2TR=')~, - = 113) 
Og - dr  

with the condition at the contact surface between the reference layer and 
the specimen temperatures 

TR((=0,  r ) =  T(~ =0,  r) (14) 

and the heat flow from the reference layer must be equal to that entering 
the specimen. Heat flow per unit area is given by 

),23 , o  0 , "  

\2~ .R/  t~ ;=,,  ~ . ~=(, 
115) 

and 

with 

(0 ",12 
~R = D \2~XaJ (18) 

j; l ,  
C=7--  (19) 

/'R 

From the measured phase difference or the amplitude ratio between the two 
surfaces of the reference layer and the thermal diffusivity of the reference 

where 2 is thermal conductivity. 
The steady periodic solution of this problem gives the amplitude ratio 

and the phase difference between the two surface (x = 0 and x = - D )  of the 
reference layer (subscript D indicates x = -D) :  

[ C+tanh((R)  ] 
AG R = a r c t a n  tanl~R) 1 + Ctanh(ff R) 116) 

( u°'~ = {[ cos( ~R )( cosh( e R ) + C sinh( (R))3 2 
lto / R 

+ [sin(~R)(Sinh(~R ) + Ccosh(~R))]2} 12 (17) 
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material, the constant C can be determined from Eq. (16) or (17), respec- 
tively. With the known thermal diffusivity from Eq. (9) or (10), the thermal 
conductivity of the specimen can be determined from Eq. (19). 

with 

2.3. Steady Temperature Oscillations in a Slab 

A slab (0 ~< x ~< L) is considered with two diathermic surfaces. On each 
side, periodic surface-temperature oscillations are generated with the same 
constant angular frequency [Eq. (2)], but with different amplitudes and 
phases. The mathematical formulation of this problem is given as (sub- 
script L indicates x = L) 

82T 8 T  
a~ -~ = a~ ( 20 ) 

T(~o = O, r) = T M + uo cos( r + Go) ( 21 ) 

= L  r = T u +tO. cosIr + G~) (22) 

/_ 

= x (23) 

The use of Laplace transform techniques yields the steady priodic solu- 
tion of Eqs. (20)-(22). For convenience the complex solution is presented: 

u, e";" sinh( ~ x//7) -,, , ,e";" sinh( V/7(Y - ~,.)) 
T*(~, r ) =  T M 4 " " e ir  (24) 

sinh(~t, x//7) 

The complex amplitude ratio B* between the points x = L/2 and x = L 
becomes 

B * =  2ut.e";" [ L ( ~ )  '2 ] 
ucei(S,. + uoeia, ' cosh ~- (25) 

The real phase difference ~4G and the real amplitude ratio are expressed as 

/e lm[B*])  
AG = arctan \ R e [ B * ]  (26) 

and 

uL = {(Re[B*])2+(Im[B*])z}  '-" (27) 
ILL~2 



418 Czarnetzki and Roetzel 

From a measurement  of the phase or the ampli tude at the two sides 
and in the center of  the slab the thermal diffusivity ~x can be determined 
from Eqs. ( 23 ), (26) or ( 23 ), ( 27 ), respectively. 

2.4. Temperature Oscillations Within the Reference Layer Covering the Slab 

Considerat ion of the reference layer and of the generating tempera ture  
oscillations at the surface of the reference layer at the top and at the 
bo t tom surface of the specimen with the same constant  angular  frequency, 
but with different ampli tudes and phases (see Fig. I), gives the mathe-  
matical  formulat ion of tiffs problem as lbllows: 

?2T R c T  R 
(28) 

with 

( 1,O ~)1 2 
= x  - -  (29) 

VXR/ 

and with the boundary  condit ions 

--2R 

Tk(~ = 0, r ) =  T(~ = 0, r) (30) 

( ,o ~ 27T. ( ' , o ) '  

22::XR J ~'~- I¢ =t, = - )" \ 2 a J  =, (31) 

The steady periodic solution in the domain  of 0 < x  < L is analogous  to 
Eq. (24). The solution in the domain  of - D < x < 0 is given as 

T * ( ~ ,  r, ~l.) = T,,, + u,,e ''~ ÷';''' cosh(~ x / i )  

+ C [ U R e " ~ + ' ; ~ ' - u , , e i ' ~ + ' ; " ' c o s h ( £ . t  x// i ) ]  s i n h ( ( x / ~ )  (32) 
. _ sinh(~/. ,,/~) 

where C is given by Eq. (19). 
The complex ampli tude ratio B~ between the points x = - D  and x = 0 

becomes 

B ~ = c ° s h ( ( ' D X / / ~ ) - C s i n h ( [ o x / / ~ } [  ( u l / u ° ) e " ~ ; t  " " sinh(,~ t (;"1 - c ° sh (~ /  x//7) t / - 7 . . / t l  
V "'  

(33) 
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The real phase difference A G  R and the real amplitude ratio are expressed 
by 

( I m [ B ~ ]  
d G ~ = a r c t a n \  L ~J/'Re~B~'! (34) 

and 

u ° =  {(Re[B*])2 + ( l m [ B , ] )  2 }' 2 (35) 
It  0 

The thermal diffusivity of the reference material and the specimen and 
the conductivity of the reference material are known, From measurement of 
the phase or the amplitude at both sides of the reference layer and of the 
other side of the specimen, the thermal conductivity of the specimen can be 
determined from Eqs. (33), (34) or (33), (35), respectively. 

2.5. Evaluation of Measurements 

Periodic temperature ocillations are generated at the surface of the 
reference layer by means of Peltier elements fed with a periodically oscillat- 
ing electric voltage. 

Every arbitrarilly shaped but strictly periodic temperature oscillation 
can be described mathematically by a Fourier series: 

(1(1 t 
T(r)=-~-+ ~ Aks in lkr+Gk)  

-- k = l  

with 

36) 

1 j-2n 
ak = - 7"( r ) cos( kr ) dr, k = O. I, 2 .... 

0 

,2n~ 
h k = n . ( .  T ( ~ ) s i n ( k r ) d ~ ,  k = 1 . 2  .... 

37) 

38) 

and 

(I  k A~. = (a~ + hl) '  -" tan G k = ~  39) 

Thus the measured temperature oscillations are regarded as a super- 
position of several sinusoids of different frequencies, amplitudes, and 
phases. Each one represents a solution according to Eqs. (8), (24), and 
(32). In the experiments the fundamental oscillation (k = 1) is considered. 
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Amplitude and phase are evaluated fi'otn Eq. (39) by numerical integration 
according to Eqs. (37) and (38). Applied to the measured tenlperature at 
the surfaces of the reference layer and at the center or a well-defined 
position of the specimen, this yields the "measured" values of the phase 
difference and the amplitude ratio. 

One-dinaensiotml thermal conductivity is achieved by adiabatic surfaces 
of the frame. For the senti-infinite body, the amplitude of the temperature 
oscillation diminishes according to Eq. (10). At the distance of one thermal 
wavelength 

/l = 2~ (2:x') '-" (40) 
\ ( o /  

the amplitude is reduced by a thctor of e x p ( - 2 , r )  = 0.0019: thus the waves 
are very strongly attenuated. This implies that the solution for the semi- 
infinite specimen can be used lot" a specimen whose thickness is greater 
than one or two wavelengths. 

3. EXPERIMENTS 

Figure 1 shows a sitnplified scheme of the measurenlent cell with 
specimen bounded by two parallel ,eference layers. The liquid is filled into 
the flat cylindrical hollow space (diameter x thickness: 50 m m x  6 mm), 
Ibrmed by the two reference discs (diameterx thickness: 50 mm x 8 ram) 
made of stainless steel and a circular fi'ame made of plexiglass. Filling and 
deaerating are done via the small tubes in the frame. The temperatures at 
the center of the specimen and at both surfaces of the reference layers are 
measured by means of Ni-CrNi thernlocouples (diameter 0.1 ram), which 
are located on the centerlme. The outside thermocouples are placed in 

heat sink therrnocouple 

 .nannnnnnnnn  
c o p p e r  I u =~u. ,u u u u u u u~j.r I 

. T  : ~  ~ / I~ ":. 
u ~ ~ filling tube . . . - - 5 - T - - F ~ / / / / / ~ / - / M ' / / / / / / / / / ~ ' / / ,  

p I e x I g l a  s S I IF~,// / / / /~,~;/~/~;_c;~,;/ / / / / / / / /J/J// . . . ; / / / / / / /z~l 

thermocouple ~ ~ Peltier- 
junction ~'~ ~ ~element 

Fig. I. Schenmtic diagram o l the  measurenlent apparatus. 
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a groove on tile surfaces of the copper plates, and the thermocouple 
junctions are butt-welded on both sides of the reference layers. The 
temperatures of the two copper plates are changed periodically by means of 
two Peltier elements (square: 40 mm x 40 mm). To improve heat transfer, 
finned plates or cooled heat sinks are mounted on top of the Peltier 
elements. 

It is possible to investigate solid specimen by replacing the frame by 
two identical solid plane spcimens with a thermocouple between them. If 
the upper copper plate and the upper reference layer are removed and thc 
frame is extended, the specimen geometry is changed into a semi-infinite 
body. 

The amplitude of the temperature oscillation inside the specimen is 
less than 1 K. To avoid convection, the measurement cell is turned in a 
vertical position. As one can see fi'om Eqs. (3) and (23 l, the sensitivity coef- 
ficient of the thermal diffusivity on the fi'equency is constant. With decreas- 
ing temperature amplitudes, the error of the amplitude measurement 
increases. Thus the fi'equency is chosen so that the amplitude attenuation 
is about 0.5. To decide about geometry and amplitude or phase difference 
measurement, the sensitivity coefficients of the dimensionless space coor- 
dinate on the amplitude and phase difference of each geometry were 
studied. To determine the uncertainty of the thermal conductivity measu,'e- 
ment, the uncertainty of the thermal properties of the reference material 
(up to 5%)  must be added. The use of the slab and the phase difference 
measurement show the smallest measurement uncertainty. The advantage 
of the semi-infinite body is better filling and cleaning, especially lbr viscous 
liquids. 

4. RESULTS 

Experiments were carried out with five liquids and compared with 
values from the literature. To reduce the random error, the temperature 
was measured over two periods and the integration range of Eqs. (37) and 
(38), was shifted. Table 1 shows the measured thermal diffusivity and con- 
ductivity of all measurements with the highest deviation from values 
available from the literature [7] .  The slab along with the phase difference 
equations were used to obtain the results given ill Table I. 

The measurement uncertainties depend on the various experimental 
parameters and on the measured medium. Of the liquids studied, only 
water has reliable values reported m the literature over a wide temperature 
range. The magnitudes of the measurement uncertainties of the semi-infinite 
body of thermal diffusivity are less than 3.5 %, and of thermal conductivity 
less than 10%. The magnitudes of the measurement uncertainties of the 
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Table I. Experimental Results on Different Specimens 

Water Ethanol Heptane Nonane Glyerine 

Difl'usivity 110 s m 2.s  t) 14.12 9.323 8.538 8.673 9.705 
Deviation from ref. 7 I'% ) 1.5 1.8 2.(I 1.7 1.2 
ConductivitylW-m ~-K ~) (I.6244 0.1780 0.1351 11.1324 0.2713 
Deviation Irom ref 7 ("i,) 4.3 2.9 7.9 11.3 5.1 
Period ( s ) I1}0 lOO 151) 151) 2111) 
Temperature ( C ) 2(I 2(1 15 20 2{) 

slab of thermal diffusivity are less than 2%, and of thermal conductivity 
less than 8 %. 

The most significant effects on the measurement uncertainties are 
thermocouple location, contact resistance of the thermocouples, and uncer- 
tainty of the thermophysical properties of  the reference layer. The onset of  
free convection can be detected by the deformation of the sinttsoidal 
temperature ocillations in the liquid. To reduce measttrement uncertainty, 
the thermocouples are located in an isothermal plane. 

5. C O N C L U S I O N S  

The apparatus described perform very well. They can be used for 
absolute measurements slightly above or below ambient temperatures. The 
experiments have demonstrated the applicability of  the method proposed 
tbr simultaneous determination of thermal diffusivity and conductivity. The 
slab apparatus achieves the best perlbrmance and can easily be modified 
Ibr measurements at pressures different from ambient pressure. It the finned 
plates are thermostated, larger temperature differences fi'om ambient 
temperature are possible. 
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